NORDic PMR module

NORDic.NORDic_PMR.functions module

NORDic.NORDic_PMR.functions.compute_similarities(f, x0, A, A_WT, gene_outputs, nb_sims, experiments, repeat=1, exp_name='', quiet=False)

Compute similarities between any attractor in WT and in mutants, weighted by their probabilities

Parameters

fBoolean Network (MPBN) object

the mutated network

x0MPBN object

initial state

AAttractor list

list of attractors in mutant

A_WTAttractor list

list of attractors in WT

gene_outputsPython character string list

list of node names to check

nb_simsPython integer

number of iterations to compute the probabilities

experimentsPython dictionary list

list of experiments (different rates/depths)

repeatPython integer

[default=1] : how many times should these experiments be repeated

exp_namePython character string

[default=””] : printed info about the experiment (if quiet=True)

quietPython bool

[default=False] : prints out verbose

Returns

simPython float

change in attractors induced by the mutation

NORDic.NORDic_PMR.functions.greedy(network_name, k, states, im_params, simu_params, save_folder=None, quiet=False)

Greedy Influence Maximization Algorithm [Kempe et al., 2003]. Finds iteratively the maximum spreader and adds it to the list until the list is of size k

Parameters

network_namePython character string

bnet network

kPython integer

maximum size of the spreader

im_paramsPython dictionary or None

[default=None] : parameters of the influence maximization

statesPandas DataFrame or None

[default=None] : list of initial states to consider

save_folderPython character string

[default=None] : where to save intermediary results (if None: do not save intermediary results)

quietPython bool

[default=False] : prints out verbose

Returns

S, spreadsPython character string list

nodes in the spreader set, Python dictionary: spread value associated with every tested subset of nodes

NORDic.NORDic_PMR.functions.run_experiments(network_name, spreader, gene_list, state, gene_outputs, simu_params, quiet=False)
NORDic.NORDic_PMR.functions.spread(network_name, spreader, gene_list, state, gene_outputs, simu_params, seednb=0, quiet=False)

Compute the spread of each gene in gene_inputs+spreader with initial state state on genes gene_outputs. Here, the (single state) spread is defined as the indicator of the emptyness of the intersection between WT and mutant attractors

Parameters

network_namePython character string

filename of the network in .bnet (needs to be pickable)

spreaderPython character string list

subset of node names

gene_listPython character string list

list of node names to perturb in addition to the spreader

statePandas DataFrame

binary initial state rows/[genes] x columns/[values in {-1,0,1}]

gene_outputsPython character string list

list of node names to check

simu_paramsPython dictionary

arguments to MPBN-SIM

seednbPython integer

[default=0] : random seed

quietPython bool

[default=False] : prints out verbose

Returns

spdsPython float dictionary

change in mutant attractor states for each gene in gene_list that is, the similarity between any attractor reachable from state in WT and any in mutant spreader+{g} where g in gene_list

NORDic.NORDic_PMR.functions.spread_multistate(network_name, spreader, gene_list, states, gene_outputs, im_params, simu_params, quiet=False)

Compute the spread of each gene in gene_inputs+spreader with initial states in states on genes gene_outputs. Here, the (single state) spread is defined as the indicator of the emptyness of the intersection between WT and mutant attractors

Parameters

network_namePython character string

filename of the network in .bnet (needs to be pickable)

spreaderPython character string list

subset of node names

gene_listPython character string list

list of node names to perturb in addition to the spreader

statesPandas DataFrame

binary initial state rows/[genes] x columns/[state ID]

gene_outputsPython character string list

list of node names to check

im_paramsPython dictionary

arguments to Influence Maximization

simu_paramsPython dictionary

arguments to MPBN-SIM

quietPython bool

[default=False] : prints out verbose

Returns

spdsPython float dictionary

change in mutant attractor states for each gene in gene_list that is, the geometric mean of similarities between any attractor reachable from state in states in WT and any in mutant spreader+{g} where g in gene_list