NORDic PMR module
NORDic.NORDic_PMR.functions module
- NORDic.NORDic_PMR.functions.compute_similarities(f, x0, A, A_WT, gene_outputs, nb_sims, experiments, repeat=1, exp_name='', quiet=False)
Compute similarities between any attractor in WT and in mutants, weighted by their probabilities
…
Parameters
- fBoolean Network (MPBN) object
the mutated network
- x0MPBN object
initial state
- AAttractor list
list of attractors in mutant
- A_WTAttractor list
list of attractors in WT
- gene_outputsPython character string list
list of node names to check
- nb_simsPython integer
number of iterations to compute the probabilities
- experimentsPython dictionary list
list of experiments (different rates/depths)
- repeatPython integer
[default=1] : how many times should these experiments be repeated
- exp_namePython character string
[default=””] : printed info about the experiment (if quiet=True)
- quietPython bool
[default=False] : prints out verbose
Returns
- simPython float
change in attractors induced by the mutation
- NORDic.NORDic_PMR.functions.greedy(network_name, k, states, im_params, simu_params, save_folder=None, quiet=False)
Greedy Influence Maximization Algorithm [Kempe et al., 2003]. Finds iteratively the maximum spreader and adds it to the list until the list is of size k
…
Parameters
- network_namePython character string
bnet network
- kPython integer
maximum size of the spreader
- im_paramsPython dictionary or None
[default=None] : parameters of the influence maximization
- statesPandas DataFrame or None
[default=None] : list of initial states to consider
- save_folderPython character string
[default=None] : where to save intermediary results (if None: do not save intermediary results)
- quietPython bool
[default=False] : prints out verbose
Returns
- S, spreadsPython character string list
nodes in the spreader set, Python dictionary: spread value associated with every tested subset of nodes
- NORDic.NORDic_PMR.functions.run_experiments(network_name, spreader, gene_list, state, gene_outputs, simu_params, quiet=False)
- NORDic.NORDic_PMR.functions.spread(network_name, spreader, gene_list, state, gene_outputs, simu_params, seednb=0, quiet=False)
Compute the spread of each gene in gene_inputs+spreader with initial state state on genes gene_outputs. Here, the (single state) spread is defined as the indicator of the emptyness of the intersection between WT and mutant attractors
…
Parameters
- network_namePython character string
filename of the network in .bnet (needs to be pickable)
- spreaderPython character string list
subset of node names
- gene_listPython character string list
list of node names to perturb in addition to the spreader
- statePandas DataFrame
binary initial state rows/[genes] x columns/[values in {-1,0,1}]
- gene_outputsPython character string list
list of node names to check
- simu_paramsPython dictionary
arguments to MPBN-SIM
- seednbPython integer
[default=0] : random seed
- quietPython bool
[default=False] : prints out verbose
Returns
- spdsPython float dictionary
change in mutant attractor states for each gene in gene_list that is, the similarity between any attractor reachable from state in WT and any in mutant spreader+{g} where g in gene_list
- NORDic.NORDic_PMR.functions.spread_multistate(network_name, spreader, gene_list, states, gene_outputs, im_params, simu_params, quiet=False)
Compute the spread of each gene in gene_inputs+spreader with initial states in states on genes gene_outputs. Here, the (single state) spread is defined as the indicator of the emptyness of the intersection between WT and mutant attractors
…
Parameters
- network_namePython character string
filename of the network in .bnet (needs to be pickable)
- spreaderPython character string list
subset of node names
- gene_listPython character string list
list of node names to perturb in addition to the spreader
- statesPandas DataFrame
binary initial state rows/[genes] x columns/[state ID]
- gene_outputsPython character string list
list of node names to check
- im_paramsPython dictionary
arguments to Influence Maximization
- simu_paramsPython dictionary
arguments to MPBN-SIM
- quietPython bool
[default=False] : prints out verbose
Returns
- spdsPython float dictionary
change in mutant attractor states for each gene in gene_list that is, the geometric mean of similarities between any attractor reachable from state in states in WT and any in mutant spreader+{g} where g in gene_list