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Abstract. The in silico detection of master regulator genes is a popular
approach to speed up drug development. These genes might be directly
related to the onset of the disease, or may act on one pathway which coun-
teracts the associated symptoms. Then, one could perhaps screen drugs
to select chemical compounds targeting these genes. In prior works, the
detection of these candidates was performed through the identification
of the regulatory interactions between genes of interest for the disease.
Indeed, system biology approaches have proven a useful tool to inte-
grate transcriptomic data and predict transcriptional profiles under gene
perturbations. However, for rare or tropical neglected diseases, building
such a regulatory model can become a tedious and time-consuming task.
In this work, we show how to build, in a reproducible and transparent
fashion, a gene regulatory network using publicly available data. Then,
we describe a method to identify master regulatory genes, which have
an impact on the dynamics of the gene regulation in a specific disease-
related transcriptional context. We showed that our novel method for
the identification of master regulatory genes was consistent with network
controllability measures, while targeting genes that were significantly en-
riched for epilepsy-related terms. Our pipeline allows for systematic and
transparent Boolean network synthesis, and identification of master reg-
ulators, which might help tackle the issue of rare or tropical neglected
diseases.

Keywords: master regulator prioritization · drug-resistant epilepsy ·
boolean network · influence maximization · machine learning application.

1 Introduction

We propose a novel generic method for the detection of master regulator genes,
which can be applied to any disease, and relies on a dynamical interplay between
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a gene regulatory network and gene expression data. We focus here, as a proof-
of-concept, on an application to epilepsy.

Epilepsy actually encompasses various neurological diseases and syndromes,
which can originate from brain injury or genetic background, that have in com-
mon a propensity to trigger chronic epileptic crises. Epileptic crises are charac-
terized by a transitory abnormal neuron electric discharge, which might lead to
unconsciousness, seizures, and/or body stiffness. Epilepsy is one of the most com-
mon neurological diseases worldwide, with around 50 million people living with
this disease [69]. Moreover, more than 25% of epileptic patients are afflicted with
drug-resistant epilepsy [26] –also called refractory epilepsy– that is, symptoms
in those patients could not be managed by at least two different antiepileptic
therapies. This shows the limits of conventional antiepileptic medication, which
are often molecules with antiseizure effects, and emphasizes the need to look
for novel therapeutic candidates. Epilepsy-related genes are shown to be usually
mainly expressed in a specific brain region, called hippocampus [44], which is
also affected by morphological changes linked to neuronal discharges in some
epileptic patients [49]. The exact relationship between lesions in the hippocam-
pus and epilepsy-associated symptoms is still unclear, but might be related to
the fact that hippocampus is one of the most excitable parts of the brain [36].
Several animal models of epilepsy exist, including a mouse model where injec-
tion of pilocarpine induce symptoms similar to temporal lobe epilepsy [59], or
another involving sodium channels, which are used to convey electric potentials
(Dravet syndrome model, by knocking out gene Scn1a [33]).

In prior works, the identification of master regulators in gene networks has
been a powerful method to detect novel genes of interest for a given disease. Mas-
ter regulator genes are DNA sequences which might have a large, global influence
on the expression of a group of genes in a specific pathway. For instance, SES-
TRIN3 [31] and CSF1R [58] were prioritised as candidate antiepileptic drug tar-
gets using different systems-biology approaches dedicated to identifying master
regulators of epilepsy-associated networks of gene expression. Such genes might
be forcibly expressed or knocked out –i.e., no more expressed– by molecules,
which might be interesting antiepileptic drug candidates. Other approaches ex-
ploit the location of a given gene inside a gene regulatory network –the more
central it is, the most regulatory it should be– or the concept of “network control-
lability” [41]. Yet, most of the cited approaches for the detection of interesting
regulatory genes only leverage topological knowledge about the network, without
considering the actual dynamics of the regulatory system. A notable exception
is the work by [71], which aimed at finding master regulator genes related to
rheumatoid arthritis based on expression data. Their approach combines a tran-
scription factor (TF) co-regulatory network and gene expression in fibroblast-like
synoviocytes in patients afflicted with rheumatoid arthritis. TF influence in these
samples was assessed using the tool CoRegNet [48], which computes a score of
influence for a given TF on a set of transcriptional profiles. This score is defined
for any TF t, that activates a set At of genes and inhibits a set It of genes, and
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for a given matrix of transcriptional profiles M 4 as follows

Influence(t) :=

(
1

|At|
∑

a∈At
M [a, :]

)
−
(

1
|It|
∑

i∈It
M [i, :]

)
√

(sAt
)2/|At|+ (sIt

)2/|It|
(1)

where sAt (resp., sIt) is the standard deviation of expression levels of all genes in
At (resp., It) across all profiles inM . However, such a computation does not take
into account downstream transcriptional cascades [8], that is, regulatory effects
which trickle down the network, beyond the genes directly regulated by the TF.
However, taking into account these regulatory cascades might allow to control
for off-target genes, which are genes subject to non specific and involuntary
changes, for which perturbation might lead to serious side effects [30]. In order
to model these regulatory cascades, we are interested in Boolean networks, which
model discrete gene regulatory interactions, for their increased interpretability.
Indeed, in this type of network, the expression level of a gene is reduced to
binary values (genes are either expressed, or not expressed), and is the product
of a unique logical function, which takes inputs from the expression states of
direct regulators of this gene [34, 64]. Yet building a Boolean network for a large
number of genes is a painful task without automation.

In order to tackle these issues, we developed a fully automated pipeline to in-
fer a Boolean network which models the regulatory interactions in a well-chosen
cell line. Our method is based on gene perturbation experiments, and on the
integration of supplementary biological information to further constraint our in-
ference procedure. Transcriptional profiles are extracted from the LINCS L1000
database, which collects a large number of profiles for several cell types and ge-
netic perturbations [62]. In our application, we focused on the gene module M30,
which global expression was shown to be anticorrelated with various epileptic
profiles and with the severity of epilepsy [18]. Using the Boolean network selected
by this method, we ranked genes in M30 according to their ability to perma-
nently modify the global expression of the network, and prioritized top genes. In
favor of their important role in epilepsy-related biological processes, this set of
candidate master regulators was significantly enriched in terms associated with
epilepsy and neurodevelopmental issues with respect to the M30 module.

2 Methods

2.1 Reproductible inference of a cell-line specific Boolean network

This part of our work aims at designing a method which, given a subset of genes
of interest, is able to retrieve a gene regulatory network on these genes that
allows the prediction of transcriptomic profiles under perturbation. We consider
the formalism of Boolean networks, introduced in [34, 64], which are popular
models to describe gene regulations.

4 In this notation, rows are genes, and columns are samples.
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Boolean networks. A Boolean network is first characterized by a graph
–that is, the network– which connects genes by their regulatory interactions.
Such connections are enriched with the direction of the interaction, which dis-
tinguishes between regulator and regulated genes, and with the sign of this in-
teraction, that is, whether the regulator inhibits or activates the expression of
its target. Second, the dynamics of the system are described by logical functions,
called “gene regulatory functions”, where variable correspond to the binary ex-
pression level (or state) of genes in the network. A single function is assigned to
each gene. The expression of a given variable is set to 1 if the associated gene
is expressed, otherwise 0. For a given gene g, its associated formulæ contains
in its premise the variables corresponding to direct regulators of g –i.e., direct
predecessors of the node in the network– and in its conclusion the variable as-
sociated with the expression level of g. Then, given the expression states of the
regulators at a given time step, one can obtain the expression state of the con-
sidered gene at the next time step, by evaluating the corresponding formulæ.
The network state (or configuration) is the concatenation of all gene expression
states. The order of evaluation of regulatory functions to go from one network
state to another is called “update step”. From a Boolean network, one can build
a state-transition diagram, where an edge goes from a given network state A
to another network state B if and only if one can reach state B from state A
in a single update step. One can read from this diagram attractor states, that
is, self-looping nodes, which are defined as steady stable network configurations.
That is, the application of the update step to this configuration will lead to itself.
Attractor states are interesting because they are commonly related to observable
biological phenotypes [7, 68]. This diagram also displays cycles of configurations,
which correspond to unsteady stable configurations ; the application of the up-
date step makes the system oscillate between a set of configurations in a cyclic
way, and can also have a biological interpretation [65]. A state-transition dia-
gram is associated with a given model and a type of update. Several types have
been suggested in the literature [12], the most well-known ones being the syn-
chronous and the asynchronous updates. In the former, all regulatory functions
are evaluated in a single step, whereas in the asynchronous update, only one reg-
ulatory function is evaluated at one update step. Recently, [51] have introduced
new dynamics for Boolean networks, which was shown to be flexible enough to
represent (a)synchronous dynamics as well as multi-level formalisms, that is,
beyond boolean values for gene expression.

Building a Boolean network from scratch. Our work focused on com-
bining several data sources and methods for the design of an end-to-end pipeline
for Boolean network synthesis, as represented in Figure 1. This network models
the regulatory dynamics on a subset of genes, in the absence of external per-
turbation, in a well-chosen cell line ; for instance, the regulations between M30
genes in brain cell lines for our application to epilepsy. Contrary to the contem-
poraneous work of [45] applied to cancer, here we do not have any access to a
generic model which could model any type of epilepsy to start with. Moreover,
relying too much on prior epilepsy-oriented knowledge might lead us to find
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already known gene candidates, whereas finding novel master regulators might
help investigating refractory epilepsy. The big picture of this pipeline comprises
of the following three main steps in chronological order, respectively denoted
(A), (B) and (C) in Figure 1 :

(A) Data collection. Step (A) encompasses the collection and filtering of
information from public, large databases : measurements of transcriptomic data
are retrieved from the LINCS L1000 database [62] using careful filtering and qual-
ity control measures ; known unsigned, undirected protein pairwise regulatory
interactions involving genes in M30 are obtained from the STRING database [63].

(B) Data processing. Then, step (B) comprises of the processing of this
information into appropriate inputs for the inference of Boolean networks. First,
a set of binarized phenotypes is built, corresponding to profiles from single gene
perturbations and their associated controls, from LINCS L1000. Then, a signed
network of possible valid regulatory interactions is constructed from the protein-
protein interactions in STRING, by filtering out and signing edges based on gene
pairwise expression correlations computed on LINCS L1000 profiles.

(C) Network inference. Finally, step (C) starts by the inference of a set of
Boolean networks which satisfy all the experimental and topological constraints
given by the phenotypes and the signed network. The experimental constraints
comprise of knockout or overexpression experiments, where the control pheno-
type is considered the initial condition, and the perturbed phenotype the final
configuration reached after the gene perturbation. A Boolean network solution
should satisfy all of these time-series constraints by only considering a set of regu-
latory interactions present in the signed network. The final step of the procedure
is the selection of an optimal Boolean network among these solutions, accord-
ing to its topology. This final inferred network is selected through a desirability
function maximization [4], which depends on several topological measures.

Details in the implementation are available in Appendix A. Note that our
method can also guess an appropriate gene subset associated with a given disease,
although this issue did not arise in our application to epilepsy. If no gene set is
provided, the method automatically retrieves genes from DisGeNet [54] using the
disease Concept ID (CID) [20]. Table 6 in Appendix reports the values used to
filter out genes from the DisGeNet database. The single network obtained at the
end of step (C) is a dynamical system which can predict the behavior of gene
expression under one or several gene perturbations, by considering the stable
states (attractors and cycles) reachable from a given initial state under these
perturbations. We now dwell on how to use this model to rank genes according
to their regulatory influence on the remainder of the network.

2.2 Detection of master regulators in a specific disease-context

As mentioned in Section 1, when looking for therapeutic candidates, one might
be interested in master regulators, that is, genes at the top of the gene regula-
tion hierarchy, which change in expression induces the largest downstream gene
expression change ; for instance, by encoding for a transcription factor which
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Fig. 1. Overview of the pipeline for the automated building of Boolean networks.

affects the transcription of other genes [43]. In practice, it is frequently quanti-
fied using the node (outgoing) degree and detection of hub nodes in the network.
Many measures defining such a “centrality” property can be computed using Cy-
toscape [56], through modules NetworkAnalyzer [3] and CytoCtrlAnalyser [70] :
for instance, control centrality [42], which has been recently used to identify reg-
ulations between NFATC4 and Type 2 diabetes-associated genes [57]. However,
these measures only use the topological information in the network, whereas
our network inference pipeline allows –along with the identification of regula-
tory connections– the inference of gene regulatory functions, adding interesting
dynamical information. This is why we designed a master regulator detection
method which leverages this information to model regulatory cascades. In [25],
a Machine Learning technique called “influence maximization” was exploited to
identify key genes in a continuous model of the yeast regulatory network. In our
work, we adapted influence maximization to Boolean networks. For long, online
recommendation and advertising researchers have been interested in influence
maximization [35], which aims at finding a node subset of fixed size which influ-
ences most the remainder of the network. In order to make this technique appli-
cable to Boolean networks, we need to explicitly define the concept of influence
on gene expression in these models. This influence is called “spread process”,
and is the quantity that propagates along the edges of the network from any
node. We define influence in an iterative way ; first we consider a single gene
and one initial network state. Then, we proceed to define multi-gene influence
starting from an initial state. We eventually describe influence for several genes
across a set of initial network states.
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Genewise influence in a Boolean network. The most intuitive definition
of influence –denoted in the remainder of the paper “spread value”– I(n) of a
given node n on the other nodes in a Boolean network with initial state i, would
be that any perturbation of this node would “greatly change” the attractor
states reachable from state i, compared to attractor states reachable from that
state in the absence of perturbation. We define this great change, yielding a
positive spread value, by the fact that those two sets of attractors have an
empty intersection. Let us denote A(i, P ) the set of attractor states reachable
from state i, under the set of perturbations P . Set P contains pairs of gene names
and their associated perturbation (either 0 for knockout, or 1 for overexpression).
Let us also denote O the set of output genes, that we define here as the set of
genes with a positive ingoing-degree, and a given similarity measure S between
network states. Then, we define the spread value for node n, initial state i, and
Boolean network B as

SVB({n}, i) = 1−max
{
S
(
a1|O, a

2
|O

)
: a1, a2 ∈ A(i, ∅)× ∈ A(i, {(n,¬i[n])})

}
,

where a1|O and a2|O are the respective restrictions of network states a1 and a2 to

the set of output genes O. The perturbation denoted by (n,¬i[n]) means that
gene n is perturbed in the opposite direction to its expression state i[n] in i : for
instance, if n is expressed in state i, then we consider knockouts of gene n. The
restriction to output genes in O is actually important in order to have consistent
results when considering isolated nodes.

Note that, if n does not have a determined expression state in initial state
i, we set the associated perturbation set to ∅. This implies that some genes
with individual spread value equal to 0 can either have no true influence on
the network, or have no determined expression state in initial state s, which
means that they are not measured during the generation of transcriptomic data.
In the latter case, this most likely means that the gene is not expressed in the
considered cell line(s).

Most importantly, this value SVB({n}, i) is equal to 0 if and only if

A(i, ∅) ∩ A(i, {(n,¬i[n])}) ̸= ∅ ,

that is, if there is any attractor in common. However, if the intersection is empty,
SVB({n}, i) is not necessarily equal to 1, as reachable attractors might still be
close to those obtained without any external perturbation.

Geneset influence in a Boolean network. When considering a set N of
node instead of a single node n, the influence of N is the spread value computed
over all attractors reachable under simultaneous perturbations of these nodes

SVB(N , i) = 1−max
{
S
(
a1|O, a

2
|O

)
: a1, a2 ∈ A(i, ∅)×A(i, {(n,¬i[n]) : n ∈ N})

}
.

Aggregation of values for several initial states. Finally, if we consider a
whole set of initial states I and a gene set N , the associated influence is defined
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as the geometric mean of spread values across initial states

SVB(N , I) =

(∏
i∈I

(SVB(N , i) + 1)

)1/|I|

− 1 ,

where |I| is the number of initial states. Note that we need to correct for zeroes
to order to avoid the collapse of this measure when one perturbation does not
trigger a change in reachable attractors for one of the initial states, while keeping
spread values between 0 and 1 for better interpretability.

Once the spread process is defined, we propose the following greedy influence
maximization algorithm to prioritize master regulators.

Algorithm 1 Greedy influence maximization algorithm for Boolean networks

Input: B a Boolean network on node set V ; K the minimal number of simultaneous
perturbations on the network ; I set of initial Boolean states
Initialize N = ∅, k = 0
repeat

k ← k + 1
# Adding to set N nodes that maximize the spread value

N ← N ∪Nk , where Nk ← arg max
n∈V \N

SVB(N ∪ {n}, I)

until
k = K or max

n∈V \N
SVB(N ∪ {n}, I) ≤ SVB(N , I)

Output: N

Influence maximization algorithm on Boolean networks. We describe
how to leverage spread values to identify master regulators in the network. Cur-
rent literature on influence maximization [52], which is a NP-hard problem, relies
on the fact that the spread function is submodular : roughly, as the considered
subset increases, the difference in the value of this function due to adding an-
other single element to the subset decreases. However, no such property can be
assessed for the definition of spread defined in the previous paragraph. We then
slightly adapted the greedy algorithm in [35] in Algorithm 1. This algorithm de-
termines the set of nodes of minimal size K which are the most influent, where
K is a predefined fixed value. It goes as follows : starting from an empty set
of nodes N0, a fixed set of initial states I, and a Boolean network B, at each
step k ∈ {1, 2, . . . ,K}, the algorithm selects the node n ̸∈ Nk which maximizes
spread value SVB(Nk ∪ {n}, I) and computes the set Nk+1 = {n} ∪Nk. The al-
gorithm stops at k = K, or at the first step k when the spread value SVB(Nk, I)
is no longer increasing, that is,

max{SVB(Nk ∪ {n}, I) : n ̸∈ Nk} ≤ SVB(Nk, I) .
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This condition is necessary to compensate for the fact that the function might
not be submodular. If, at a given step k, several nodes maximize the spread
value, they are all added to set Nk+1. The iteratively built set NK is then the
set of possible K-sized gene subsets to simultaneously perturb on the network,
such that the set of attractors reachable from initial set I is greatly modified.
In this work, K = 1, that is, we only looked at individual contributions of genes
to the changes, and we ranked gene n among genes in the network according to
its spread value SVB({n}, I).

Set of initial network states (I). We consider transcriptomic profiles
from human hippocampi afflicted with temporal lobe epilepsy (TLE) in [44] for
the initial states, such that genes are ranked according to their influence in an
epileptic context. Temporal lobe epilepsy is one of the most common forms of
partial epilepsy, where seizures affect one part of the brain, and is often asso-
ciated with cases of refractory epilepsy that cannot be surgically treated [28].
Details about the implementation and initial states are available in Appendix C.
207 genes out of 232 genes both from the M30 module and present in the net-
work are mapped to expression levels in these states, which means that for these
genes, we are sure that any spread value equal to 0 for any of these genes truly
means that the gene has no influence over the remainder of the network.

Similarity between attractor states (S). The definition of the spread
process relies on a similarity function S defined between two network states,
that was left to be defined. In our implementation, we wanted to compute the
differences in the presence of ones and zeroes, which prevented us from directly
using Jaccard’s score. Based on previous surveys of the state-of-the-art on binary
distances [15], we implemented a “normalized” ℓ1-norm distance. That is, if a1

and a2 are the two binary vectors to compare (of size d), then the resulting
similarity S(a1, a2) between a1 and a2 is :

S(a1, a2) = 1− 1

d

d∑
i=1

|a1[i]− a2[i]| .

This expression is exactly the percentage of row-wise equal coefficients in a1 and
a2, and yields 1 when a1 = a2, and 0 for a2 = (a1 + 1) ≡ [2] (modulo 2). It
penalizes in a symmetric way differences in 1’s and 0’s.

Genericity of the method. Note that this methodology, combining the
synthesis of a Boolean network and influence maximization, can generically be
applied to any disease. To adapt this pipeline to another disease, one needs to
change the gene subset and the cell line(s) on which the network should be built,
as well as the set of initial network states for the detection of master regulators.
In the application to epilepsy, we considered the M30 gene module, and the two
brain cell lines present in the LINCS L1000 database. Code for the synthesis
of the Boolean network and the detection of master regulators is available at
https://github.com/clreda/PrioritizationMasterRegulators.
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3 Results

3.1 Networks obtained from the inference procedure

We discuss the network solutions resulting from step (C).

The final network compiles several sources of regulation. The final
network obtained at the end of step (C) is shown in Figure 2. In this figure, nodes
are colored by their degree ; the darker the color, the higher the degree. Edges
in Figure 2 are colored according to their source of evidence as reported by the
STRING database [63]. One can notice that there are a lot of undirect gene-to-
gene regulatory interactions in this network. This actually is not very surprising,
since few gene pairwise interactions are experimentally tested compared to all
possibly existing interactions. Moreover, our model does not aim at taking into
account exclusively transcriptomic interactions, but possibly non-physical, post-
transcriptomic effects.

The synthesis outputs similar network solutions. Now, we consider all
25 5 network solutions generated at step (C). We assess how far they are from
each other, in terms of node degree distribution, edge numbers, redundancy in
interactions, unicity of regulatory functions for each node across those solutions,
and values of general topological parameter (GTP). GTP is a value comprised
between 0 and 1 that is used to select the final network among the 25 ones (as
further described in Subsection A.6 in Appendix) and characterizes the proximity
of a network topology to a scale-free-like one. Table 1 shows distribution statistics
about the values of GTP and the unicity of gene regulatory functions across
solutions. Note that all solutions present similar topologies, with similar GTP
scores quite close to 1, which matches what can be expected from biochemical
interaction networks in non-fungi systems [10]. Moreover, except for less than
25% of the genes in the network, genes are assigned at most 3 different regulatory
functions across all solutions, which shows that their function in the network is
globally preserved. Figure 3 displays the boxplots of edge number and node
degree distributions across solutions. These two plots show that, as mentioned
before, the typical scale-free topology, with a few “hub nodes” with large degree
and a large number of genes with few regulatory interactions, is present in all
solutions. There are 74 interactions (that is, around 30 − 34% of edges) which
are present in at least 75% of the solutions, among which 25 are present in all of
them. They are shown in Table 7 located at the Appendix. These numbers are
confirmed by plotting the network comprising of all genepairwise interactions
which are present in at least one solution, shown in Figure 4. All in all, the
networks obtained just before the model selection step mostly seem similar, both
functionally –at the level of regulatory functions– and topologically –considering
the node degrees, the number of edges, and the GTP scores.

5 That number was chosen for reasons related to computational cost and time. Note
that in Appendix we discuss how adding 25 additional network solutions neither
changes the final network, nor the conclusions made in this section.
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Fig. 2. Inferred network resulting from our pipeline applied to the M30 gene mod-
ule. Tee-headed arrows represent inhibitory regulatory interactions, whereas triangle-
headed arrows are activatory regulations. Edges are drawn according to their source
of evidence (on the undirected interactions) as reported by the STRING database:
contiguous arrows denote coexpression, solid line denote experimental proofs of inter-
action, and sinewave interactions are derived from text-mining procedures. Gene nodes
are colored according to their out-degree: lightest color for genes with outdegree equal
to 0, darkest for genes with an outdegree higher than 5. Isolated nodes are not shown.

Table 1. Distribution statistics on the number of unique regulatory functions (RFs)
across solutions per gene, and on the value of the general topological parameter (GTP)
used for network selection in step (C) of the inference procedure. All values are rounded
up to the 3rd decimal place.

Min. 25th quantile Median Mean 75th quantile Max.

# RFs 1 1 2 2.202 3 11
GTP 0.796 0.798 0.800 0.800 0.800 0.802

Fig. 3. Left-hand plot : Boxplots of node total degrees (ingoing and outgoing degree)
per solution. The green lines represent median values. Right-hand plot : Boxplot of the
number of edges across solutions (which all comprise of 232 M30 genes). Again, the
green line represent the median value.
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Fig. 4. Network comprising of all gene-to-gene interactions which are present in at
least one solution. The darker and thicker an edge is, the more frequent it is across
solutions. Sinewave edges are inhibitory interactions, whereas solid lines denote acti-
vatory interactions. Orange nodes correspond to the genes which are perturbed in the
LINCS L1000 experimental profiles used for inference.

3.2 Recommended master regulator candidates

We now study the master regulator candidates ranked by spread value.
Spread values are correlated with network centrality and gene

pathogenicity. We computed the correlation between spread values for our
application to epilepsy, genewise Control Centrality [42] values computed with
CytoCtrlAnalyser [70], and genewise outgoing degrees. The outgoing degree is
the number of direct downstream targets, whereas Control Centrality is the num-
ber of nodes which are affected by a change in the considered node, based on
the topology of the directed network. More specifically, in order to compute the
Control Centrality for any gene g, at some time step t, (continuous) expression
levels x(t) ∈ RN are time-invariant and depend linearly on those at the previous
time step t− 1 x(t− 1) ∈ RN , where N is the number of genes in the network

∂x(t)

∂t
= Ax(t) + ug(t) , (2)

where A is the adjacency matrix in RN×N associated with the network, and
ug(t) ∈ R is the external signal imposed on node g at time t (either overexpres-
sion if it is positive, or knockout otherwise). In such a system, computing the
number of nodes which can be controlled by gene g boils down to getting the
rank of the so-called controllability matrix related to A and g, that is a function
of powers of matrix A. This rank can be computed by solving a combinato-
rial optimization problem described in Equation (3) in [42]. Moreover, since the
true nonzero values in A as well as ug(·) are often unknown, Control Centrality
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aims at quantifying structural controllability, independently from the values of
nonzero coefficients in A and ug(·). All in all, Control Centrality is a solid coun-
terpart to our method. It does not take into account neither the set of regulatory
functions nor the gene expression levels in patients, but models regulatory cas-
cades through the differential equation in Equation 2. We also compared spread
values to scores associated with the pathogenicity of genes :

- probability of loss of function intolerance (pLI) [38], which quantifies the
intolerance to the loss of function of a given gene in patient and control cohorts.

- enhancer-domain score (EDS) [67], which studies the conservation of the
regulatory domain around genes.

- residual variation intolerance score (RVIS) [53], which is related to the
presence of functional genetic variation in patient exomes, and is anticorrelated
with gene pathogenicity.

Finally, we computed “TF” influence scores [48] as well, which expression
is reported in Equation 1. Figure 5 displays the correlation heatmap between
these different measures. We observed that, contrary to (TF) influence values,
spread values were consistent and strongly correlated with network controlla-
bility measures, that is Control Centrality and the outgoing degree. Moreover,
spread values are more strongly correlated with gene pathogenicity-related mea-
sures pLI and (opposite of) RVIS. We tested whether the spread value was ac-
tually totally determined by the number of downstream (not necessarily direct)
regulated genes. To do so, we performed a Spearman’s ρ linear correlation test
on the spread values and the number of downstream regulated targets for each
gene. We confirmed that there is a strong, significative correlation between the
two –which is expected, given the definition of the spread value– but that the
spread value is not completely determined by this value ; that is, the associated
statistic is not equal to 1 (ρ = 0.82, p = 3.10−57).

Top genes for spread values are significatively enriched in disease-
related terms. Moreover, from Figure 6, it can be noticed that there is a lot
of discrepancy between pLI scores and spread values on M30 genes. Nonethe-
less, it should be noted that [72] warns against genes which are involved in
recessive forms of diseases, while having a low pLI score. That is actually the
case for gene GNB5, which has a central place in our network (shown in Fig-
ure 1) with spread value 0.024, pLI score close to 0, and is involved in a re-
cessive form of epileptic encephalopathy [55]. Moreover, using the online tool
WebGestalt [39], we performed a Over-Representation Analysis (ORA), in order
to check if the shortlist of 14 genes with spread value greater than 0.01 was
significantly enriched in epilepsy-associated terms, compared to the 232 genes
present in the network. The disease terms were annotations from the DisGeNet
database [54]. 6 Indeed, this shortlist is (weakly) significantly enriched in genes
related to the term “Epileptic encephalopathy” at level 5% (odds ratio OR = 7.5,
Benjamini-Hochberg (BH) [6]-adjusted p ≈ 0.038), and more strongly enriched
with (neuro)developmental issues, for instance, “Loss of developmental mile-

6 Remember that, in the application to epilepsy, we did not use genes from DisGeNet,
but the preselected set of genes M30.
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stones” (OR = 10.5, BH-adjusted p ≈ 0.012), as reported in Figure 5. Similar
results can be observed on another family of gene annotations, GLAD4U [32],
as shown in Figure 8 in Appendix. The considered shortlist of genes is shown
on Figure 6. These enrichment results go beyond the fact that M30 is globally
enriched in epilepsy-related de novo mutations compared to the whole measured
genome in brain cell lines, as shown in [18] : what is shown is that, among genes
in the M30 module, ranking by spread values still prioritized interesting genes.

Fig. 5. Left : Spearman’s ρ correlation heatmap between different gene measures either
related to the influence of a node on a network, or to the genetic variations associated
with pathogenicity. Right : Enrichment results from the ORA analysis. All reported
adjusted p-values are lower than 20%.

Most top genes cause human epilepsies. Based on the results shown in
Figure 5 and Table 2, a shorter list of candidate genes is selected. It comprises of
genes with rather large spread value (greater than 0.01) and pLI score (greater
than 0.9), and of genes with very large spread value (greater than 0.02). The
last condition holds in order to avoid the previously mentioned shortcoming in-
curred by pLI scores. These candidate genes are CACNA1A, RBFOX1, STXBP1,
DNM1, NRIP3, SCN8A, CHRM2, GNB5, TUBB2A, PAK7, and GRIN1, shown
on Figure 6. Most of these candidates –except for NRIP3, which is notably
mainly expressed in the hippocampus– have a relationship to epilepsy-related
symptoms in humans shown in prior works [47, 37, 60, 2, 11, 55, 1, 17, 50], as ex-
pected due to their membership to the M30 module. Some of these genes may
never been investigated in the research related to epilepsy, such as NRIPS3. For
other genes, for instance, STXBP1 and GRIN1, knockouts of orthologuous genes
were associated with epileptic seizures in zebrafish [27].
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Table 2. Distribution statistics (rounded up to the 5th decimal place) of the spread
values obtained for M30 genes present in the inferred network.

Minimum 25th quantile Median Mean 75th quantile Maximum

0.0 0.0 0.0 0.00254 0.0 0.0556

Fig. 6. Genes ranked by decreasing spread value, restricted to spread value greater
than 0.01 (center bar), with their associated Control Centrality (CC) (top bar), and
pLI scores (bottom bar).

4 Discussion

We introduced in this work two main contributions to in silico disease research.
First, we designed a method for the automated inference of a gene regula-
tory network from scratch, starting from a subset of genes. This method care-
fully combines information from several public databases and methods, and in-
fers a dynamical model of gene regulation adapted to specific cell lines. This
method yields quite robust network solutions, and is easily reproducible. Then,
we showed how to exploit this dynamical system to detect master regulator
genes. We applied our methodology to investigate epilepsy, and to find novel
candidate genes to hopefully tackle drug-resistant epilepsy. A list of candidate
genes was prioritized, which perturbations greatly impact the whole network in
an epileptic transcriptomic context. This methodology allows reproducible and
transparent research, while reducing the amount of data needed as input, which
is one of the main caveats of researching on rare or tropical neglected diseases.
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Alföldi, R., Puskás, L., Valencia, A., Barillot, E., et al.: Patient-specific boolean
models of signalling networks guide personalised treatments. Elife 11, e72626
(2022)

46. Mudunuri, U., Che, A., Yi, M., Stephens, R.M.: biodbnet: the biological database
network. Bioinformatics 25(4), 555–556 (2009)

47. Myers, C.T., McMahon, J.M., Schneider, A.L., Petrovski, S., Allen, A.S., Carvill,
G.L., Zemel, M., Saykally, J.E., LaCroix, A.J., Heinzen, E.L., et al.: De novo mu-
tations in slc1a2 and cacna1a are important causes of epileptic encephalopathies.
The American Journal of Human Genetics 99(2), 287–298 (2016)

48. Nicolle, R., Radvanyi, F., Elati, M.: Coregnet: reconstruction and integrated anal-
ysis of co-regulatory networks. Bioinformatics 31(18), 3066–3068 (2015)

49. Ogren, J.A., Wilson, C.L., Bragin, A., Lin, J.J., Salamon, N., Dutton, R.A., Luders,
E., Fields, T.A., Fried, I., Toga, A.W., et al.: Three-dimensional surface maps
link local atrophy and fast ripples in human epileptic hippocampus. Annals of
Neurology: Official Journal of the American Neurological Association and the Child
Neurology Society 66(6), 783–791 (2009)

50. Ohba, C., Shiina, M., Tohyama, J., Haginoya, K., Lerman-Sagie, T., Okamoto,
N., Blumkin, L., Lev, D., Mukaida, S., Nozaki, F., et al.: Grin 1 mutations cause



Prioritization Through Boolean Networks 19

encephalopathy with infantile-onset epilepsy, and hyperkinetic and stereotyped
movement disorders. Epilepsia 56(6), 841–848 (2015)
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A Building the boolean network

This section of the Appendix further describes the procedure used to infer a
Boolean network in our application to epilepsy.

A.1 Step (A) : Building a undirected unsigned graph

This step builds an undirected, unsigned network of putative gene-to-gene regu-
lations. The gene module M30, as defined by [18], comprises of 320 genes which
global expression anticorrelates with epileptic phenotypes. We retrieved all 320
genes of the M30 module from the additional file 1 in [18]. Undirected and un-
signed protein-pairwise interactions involving two proteins encoded by M30 genes
were extracted from the STRING database [63] for the human (NCBI taxon ID
9606). In order to perform the inference, it is necessary for computational rea-
sons to restrict the set of edges to consider ; however, (weak) connectivity in
the graph of interactions should also be preserved to fully exploit the dynamical
constraints provided later on.

Considering the full network retrieved from the STRING database, we trimmed
out isolated genes –i.e., without any interactions with any gene, not even them-
selves. 318 genes out of 320 were retained after this procedure, with a total of
14, 662 edges. The STRING database also provides scores associated with each
undirected edge named “combined scores”, which are comprised between 0 and
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1, 000, and aggregate various scores related to the type of evidence support-
ing these edges [66]. This higher this score is, the more strongly supported the
associated edge is. Provided a user-provided threshold η on this combined score,

- First, we built a protein-protein interaction (PPI) network by preserving
all edges with a combined score greater than η ;

- Then, considering all edges which contain at least one gene that do not
appear in the set of edges at the previous step, we sorted them in the order of
decreasing combined score, and added them sequentially (adding simultaneously
edges with the same score) to the network, until the number of weakly connected
components is 1.

We tested (weak) connectivity by performing a Depth-First Search [16], which
is a well-known procedure that explores all the nodes in a graph by favoring the
exploration of child nodes instead of sibling nodes, until all nodes have been
visited.

In order to select the threshold η = 400, we performed a gridsearch on
[[100; 1, 000]] with a step of 5, and selected the value which minimized the num-
ber of edges. This step is automatically performed the first time the inference
procedure in the repository 7 is run, such that the user can use the threshold
value η recommended by the grisearch. Choosing η = 400 allowed reducing the
number of undirected edges from 14, 662 to 1, 633.

A.2 Step (A) : Gene perturbation experiments

At this step, we restricted the set of genes –subsequently, of interactions– to
genes present in the database of transcriptional profiles LINCS L1000 [62]. To
do so, we converted all gene identifiers in M30 into EntrezGene IDs using BioDB-
net [46]. Then, we filtered out genes for which the EntrezGene ID was not present
in LINCS L1000. After this step, 236 genes, out of 318, were retained. We se-
lected experiments present in LINCS L1000 such that at least one gene from
M30 has been perturbed in a genetic experiment (knockdown or overexpression,
along with control samples) on a brain cell line. Unfortunately, there are no
hippocampal neuron human (HN-h) cell lines in LINCS L1000; These cells are
able to differenciate into neurons and glial cells as shown in the rat [22], which
is why we assumed that the neural progenitor cell (NPC) line present in LINCS
L1000 might be appropriate. Furthermore, among the genetic perturbation ex-
periments listed in the database, we selected those which satisfy all following
conditions

- which are associated to the highest metric distil ss (as provided by the
LINCS L1000) which is correlated with the number of significantly differentially
expressed transcripts found in the differential analysis between the matching
genetically treated and the control groups. In practice, this measure is correlated
with the reproducibility of a drug signature [40].

- where there is at least two replicates from the same plate for the perturbed
and control (of type ctl vector) conditions.

7 https://github.com/clreda/PrioritizationMasterRegulators
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- which interference scale (computed as described in [13]) is positive. This en-
sures that the associated genetic perturbation experiment was successful. That
means that a gene which has been perturbed by a knockdown (resp., an over-
expression) has an expression lower (resp., greater) in treated profiles than in
controls, compared to an appropriate housekeeping gene. The expression levels
in these housekeeping genes should not dramatically change in both groups of
profiles.

- where the associated experiment is either using shRNA (knockdown per-
turbation), cDNA, also known as knock-in (overexpression perturbation), or
CRISPR (knockout perturbation).

- where the associated cell line is either SHSY5Y (neuroblastoma) or NPC
(neural progenitor cells), which are the only brain cell lines in LINCS L1000.

The result of this step is a matrix of M30 genes by experimental profiles,
which contains Level 3 LINCS L1000 data (normalized expression data for the
whole genome) for each perturbation experiment. See Table 4 in Appendix for
the list of experimental profiles retained in the application to epilepsy.

A.3 Step (B) : Binarization of experiments into binary profiles

Although there are known methods for the binarization of (single) RNA-seq
data [23, 5], probably due to the fact Level 3 LINCS L1000 data is a combi-
nation of measured and inferred expression data, for different platforms (RNA-
sequencing data for the most recent version, microarray for the first generated
profiles), there were issues with the model fitting ; only a few genes were as-
signed a binary value 0 or 1 –the alternative being that they are not considered
expressed “enough”, according to the thresholds computed by these methods, to
be assigned a state equal to 1, nor too weakly expressed to be assigned a state
equal to 0). A data-driven method to tune the granularity of the binarization,
adaptive to the selected perturbation expression data, was necessary in order to
explicitly enforce a trade-off between a full reliance on undirected edges provided
by the STRING database, and on experimental profiles from LINCS L1000.

Binarization. We designed an ad hoc binarization method to satisfy these
constraints. This binarization was independently performed on each cell line.
Gene expression data (as normalized RNA counts) was first quantile-normalized
and clipped to the interval [0, 1]. Control samples (for the same cell line) were ag-
gregated by considering the genewise median expression value. Given the thresh-
old ζ, all genes with expression greater than 1 − ζ were considered greatly ex-
pressed (with assigned state 1), whereas genes with expression lower than ζ were
considered non-expressed (with assigned state 0). Genes which expression lev-
els were in the interval [ζ, 1 − ζ] had an undetermined expression state. Note
that the quantile normalization is necessary, even though the initial expression
data was normalized, in order to apply a same threshold ζ on all profiles. The
higher ζ is, the more constrained the experiments are, as more genes have a
determined expression state 0 or 1. Lower thresholds mean less constrained ex-
periments, and a higher preference for the regulatory interactions filtered from
the STRING database over expression data from LINCS L1000.
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Using a bisection method in interval [0; 0.5] with precision 0.0005, we iden-
tified ζ = 0.265 as the maximum threshold such that the inference of Boolean
networks satisfying these experimental constraints admits at least one solution.
We recommend using this bisection method to determine the threshold ζ when
using the pipeline with another dataset.

Background expression data. However, this method relies on having
enough data to compute reliable statistics of expression for each gene, which
is why, for each cell line, we automatically retrieved from LINCS L1000 a “back-
ground” expression matrix, which we concatenated to the set of profiles before
binarization. After binarization, we removed samples associated with the back-
ground dataset. In order to collect the background expression matrix, we selected
all experiments in the considered cell line, with type pert sh (knockdown experi-
ments), and we filtered out experiments with less than two replicates, with metric
distil cc q75 greater or equal to 0.2, and with metric pct self rank q25 lower
than 0.05. Metrics distil cc q75 and pct self rank q25 are two measures as-
sociated with experimental profiles which quantify the reproducibility based on
the correlation between the same technical replicates (distil cc q75) and the
diversity of profiles for a given experimental setting (pct self rank q25). These
rules correspond to the requirements for reproducible and distinct (so-called
“gold”) profiles according to LINCS L1000 documentation. Finally, we selected
the same-plate replicates with the highest value of distil ss. 8

A.4 Step (B) : Implementation of topological constraints

The inference of a Boolean network relies on a set of admissible interactions
and a set of time-series expression constraints. Indeed, solution networks only
comprise of a subset of these admissible interactions, such that all constraints
provided by the observations are satisfied.

In order to build the set of admissible interactions, we considered the PPI
network extracted from the STRING database. Since these interactions are un-
signed, we decided to reduce the number of possible interactions –and thus, the
computational cost of the method– by using the gene perturbation expression
matrix retrieved from LINCS L1000 (Table 4)

- First, a Pearson’s r [9] gene correlation matrix was computed from these
profiles, and raised to the power of β coefficient-wise, which allowed signing the
interactions using pairwise correlation signs.

- Then, to preserve connectivity, we built the filtered signed undirected net-
work similarly to what we previously did, using a threshold on the correlation
values equal to τ = 0.4.

β was chosen as it is known that raising an adjacency matrix A to the power
of β yields coefficients A[i, j] in position (i,j) equal to the number of paths
(with eventually repeated edges) between node i and node j of length β. τ was
chosen as a compromise between richness of the network (number of edges) and
computational cost, by a bisection search in interval [0.01; 1] with step 0.005,

8 These measures are further described at https://clue.io/connectopedia/glossary.
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which would be the way to go to apply our method to other datasets. After
this procedure, we removed isolated genes in the network (that is, with both
ingoing-degree and outgoing-degree equal to 0). After this step, 232 genes were
left in the network, with 637×2 putative genepairwise interactions (one for each
direction between two genes). We stress on the fact that preserving connectivity
will be crucial for properly exploiting the experimental data, which is why we
trim out isolated genes.

A.5 Step (B) : Implementation of experimental constraints

After building the set of admissible interactions, we turned to building dynamical
constraints, that is, the binary expression states of genes in the network according
to experimental profiles from LINCS L1000.

The experiments shown in Table 4 comprise of control and perturbed profiles
in single gene perturbation experiments –by knockdown through shRNA in our
application to epilepsy. First, these profiles were binarized using the binarization
procedure described above. Then, for each knockdown experiment, we consid-
ered as initial condition the profile obtained from control samples, and as final
condition the one obtained from perturbed samples, which is set as a (steady)
attractor states.

In order to implement the new dynamics in [51], we used the Python pack-
age BoNeSiS [14], which infers by answer-set programming Boolean networks
–both the set of regulatory interactions and regulatory functions– that satisfy
the experimental constraints with a subset of admissible interactions. We use
the procedure in BoNeSiS which randomizes the search for network solutions.
Moreover, in order to avoid trivial solutions without interactions, we also imple-
mented the constraint that the state where all genes were not expressed (i.e.,
with expression state 0) cannot lead to any of the reported final attractor states.
This constraint can be challenged, as one might assume that a network could end
up in the state where all genes are turned off in a transient way, if there are some
genes which are only regulated by inhibitors. However, in practice, the inference
procedure without this constaint yields singularly trivial and poorly connected
solutions (i.e., most genes ending up without any regulators). We conjecture that
it is linked to the procedure of answer-set programming, as similar methods, for
instance Re:In [21], give the option of adding supplementary constraints about
the presence of an activator for some genes.

A.6 Step (C) : Inference solutions and model selection

Inference of Boolean network solutions. In BoNeSiS, we asked for the
enumeration of at most 1 solution to the set of topological and experimental
constraints defined above. In the implementation of the most permissive seman-
tics in [51] by [14], the size of the Boolean function specification can be upper-
bounded by a prespecified value. In my application, I have used the maximum
total (i.e., ingoing and outgoing) degree of the underlying network, in order to
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avoid spurious gene regulatory functions. Due to the intrinsic randomness stem-
ming from the solver clingo [24], and the randomized search procedure used
in BoNeSiS, we iterated this enumeration, such that we obtained 25 Boolean
network solutions (among which 25 are unique in terms of regulatory functions).

Selection of an optimal model. In order to select a “representative” net-
work consistent with what is known about the topology of biological networks, [4]
compiled a list of network measures to maximize in biological networks, and com-
puted a single scalar criterion value comprised in the interval [0, 1] to maximize
through the Harrington desirability index [29]. This value was called “general
topological parameter”. In practice, using the notation from [4], we considered
the following weights

aDS = 3, aCL = 3, aCentr = 3, and aGT = 1 ,

where
- DS corresponds to the network density, that is, the ratio of the number of

edges to the maximum number of possible connections between the nodes in the
network (that is, if the network was fully connected) ; for a network of n nodes,
this maximum number is equal to (n− 1)n/2.

- CL corresponds to the network clustering coefficient which is the average
of node-wise clustering coefficients. The clustering coefficient of a node is the
ratio of the degree of the considered node and the maximum possible number
of connections such that this node and its current neighbors form a clique (i.e.,
form a fully connected graph).

- Centr corresponds to the network centralization, which is correlated with
the similarity of the network to a graph with a star topology.

- GT corresponds to the network heterogeneity, which quantifies the nonuni-
formity of the node degrees across the network by computing the ratio between
the standard deviation of the node degrees and the average degree across the
network.

The higher the weights, the more importance is given to having a large as-
sociated coefficient. Finally, for every network solution N returned by BoNeSiS,
we computed

exp (mean {− exp (x× a− 1) : (x, a) ∈ V(N)}) ,

where V(N) is the set of pairs (value, weight) associated with each topological
measure

V(N) := {(DS(N), aDS), (CL(N), aCL), (Centr(N), aCentr), (GT(N), aGT)} .

The final network was the one which maximized this quantity.

A.7 Robustness on a larger set of 50 solutions

Since the enumeration of solutions is still computationally expensive and time-
consuming, we focused on a collection of 25 network solutions. However, in order
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to assess the robustness of our inference procedure, we enumerated an additional
set of 25 solutions, and reproduced the two plots shown in the main paper. Note
that these 25 solutions were different from the first 25 ones, yielding a set of
50 unique solutions (in terms of gene regulatory functions). The selection of the
optimal model run on these 50 models returned the same network shown in the
main paper. Table 1 and Figure 3 allow us to conclude similarly to the main
paper, that is, the networks obtained just before the network selection step are
mostly functionally and topologically similar.

Table 3. Distribution statistics on the number of unique regulatory functions (RFs)
across solutions per gene, and on the value of the general topological parameter (GTP)
used for network selection in step (C) of the inference procedure. All values are rounded
up to the 3rd decimal place. Applied on the set of 50 solutions.

Min. 25th quantile Median Mean 75th quantile Max.

# RFs 1 1 2 2.635 3 17
GTP 0.794 0.796 0.797 0.797 0.799 0.802

Fig. 7. Left-hand plot : Boxplots of node total degrees (ingoing and outgoing degree)
per solution. The green lines represent median values. Right-hand plot : Boxplot of the
number of edges across solutions (each solution comprise of 232 nodes). The green line
represent the median value. Applied on the set of 50 solutions. Note that the first 25
boxplots match the plot in Figure 3.

B Tables

This section of the Appendix shows supplementary tabular data about the in-
ference of the Boolean network.
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B.1 Experimental profiles from LINCS L1000

Table 4. Experimental profiles retrieved from LINCS L1000 for the application to
epilepsy, as annotated in LINCS L1000. ∗ KD stands for knockdown. ∗∗ Time (in
hours) of exposure to the perturbagen. # number of replicates

Profile brew identifier (suffix) Cell line Gene Type Time∗∗ Dose Nb#

KDB003 NPC 96H NPC PSMG1 KD 96 1.5µL 4
Samples {X1,2.A2,X2,X3.A2}
Treated B6 DUO52HI53LO:K16
Control B6 DUO52HI53LO:F13
EKW001 SHSY5Y 120H SHSY-5Y SOD1 KD∗ 120 N/A 3
Samples {X1,X2,X3}
Treated F1B3 DUO52HI53LO:J20
Control F1B3 DUO52HI53LO:I05
Treated F1B3 DUO52HI53LO:H17 SYT1 KD 120 N/A 3
Treated F1B3 DUO52HI53LO:I19 CACNA1C KD 120 N/A 3
Treated F1B3 DUO52HI53LO:A03 CDC42 KD 120 N/A 3

B.2 Parameters

Table 5. Parameter values for the synthesis of Boolean networks (application to
epilepsy).

Definition Value

η Threshold for selecting edges from STRING [63] 400
ζ Threshold for the binarization step 0.265
β Power applied to the matrix of genepairwise correlations 1
τ Threshold for filtering out edges in the putative network 0.4

Table 6. Threshold values (lower bounds on scores) for the retrieval of disease-
associated genes from DisGeNet [54]. The full definitions of these indices are reported
at this page. [19] EI : Evidence Index. DSI : Disease Specificity Index. DPI : Disease
Pleiotropy Index.

Score EI DSI DPI Source

Value 0 0 0.25 0 CURATED
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C Implementation of the influence maximization
algorithm

This section deals with supplementary data about the implementation of the
influence maximization procedure.

C.1 Iteration of attractor states

In order to enumerate attractors under perturbations, we used PyMaBoSS [61].
We ran PyMaBoSS with 1, 000 trajectories, for reachable attractors within 50
time steps, and parameters time tick = 1, use physrandgen = 0. Unfortu-
nately, this method does not guarantee the similarity of attractors from one
iteration to another, but our tests showed that, although there is some notice-
able change in the resulting spread values, it does not affect the final ranking on
genes. We never had to deal with the case where no attractor state is retrieved
with these parameter values.

C.2 Choice of initial states

In our application, we considered the integration of a disease-specific context by
considering 48 hippocampi normalized transcriptional profiles of humans affected
with Temporal Lobe Epilepsy (TLE) [44] (EMTAB 3123 on ArrayExpress). The
main idea is that we specifically target genes which regulatory influence is high
in a transcriptional context for epilepsy. We restricted these epileptic profiles to
genes present in the network, and binarized the profiles according to the bina-
rization procedure described in the first section, with corresponding threshold ζ
equal to 0.5, so that all genes have a determined binary expression state.
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D Additional results

This section shows additional results related to the inference of the Boolean
network and the spread values.

Table 7. Regulatory interactions present in all of the 25 solutions. ∗ strongest evidence
source from the STRING database. “Association in databases” means associated in
curated pathway databases.

Regulator Regulated Sign Evidence source∗

RBFOX1 PEG3 Inhibitory Coexpression
SLITRK3 IL1RAP Inhibitory Text-mining
TSPAN7 AFF2 Activatory Coexpression
UQCRQ TIMM17A Inhibitory Coexpression
CENPJ ANAPC1 Activatory Coexpression
SYT13 MLLT11 Inhibitory Coexpression
GUCY1B3 AHNAK2 Activatory Text-mining
PLEKHG3 CCDC68 Inhibitory Text-mining
MLLT11 TTC3 Activatory Text-mining
SULT4A1 KIAA0232 Inhibitory Text-mining
GRIN1 CIT Activatory Interaction
GPI ANXA6 Inhibitory Text-mining
RBFOX1 ZMAT4 Activatory Coexpression
FAR2 FAM49A Inhibitory Text-mining
RAB3A REEP2 Activatory Coexpression
CAMK2B AGGF1 Inhibitory Association in databases
GAP43 ELAVL2 Inhibitory Coexpression
ADAM22 EPB41L3 Inhibitory Coexpression
CDC42 ARHGAP44 Activatory Interaction
GNB5 PAK1 Inhibitory Association in databases
STMN2 PSMG1 Inhibitory Coexpression
AMPH AAGAB Activatory Interaction
GNB5 PRKCE Inhibitory Association in databases
ATP1B3 FXYD7 Inhibitory Association in databases
ATP1A3 PANK2 Activatory Text-mining
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Fig. 8. Enrichment results from the ORA analysis on the filtered list of genes based on
spread values from the DisGeNet annotations [54] (top) and GLAD4U [32] (bottom).
The top-10 annotations (in increasing order of BH-adjusted p-value) are reported. All
of these adjusted p-values are lower than 20%.


