

## Towards a large-scale benchmark of collaborative filtering in drug repurposing (#507716)



Clémence Réda<sup>1</sup>, Jill-Jênn Vie<sup>2</sup>, Olaf Wolkenhauer<sup>3</sup>

Drug development is expensive, prone to high failure rate in commercialization. Incentives tend to focus on profitable diseases, which penalizes rare / tropical neglected disease research. [1]

SYSTEMS BIOLOGY

BIOINFORMATICS

ROSTOCK

**Drug repurposing** screens documented molecules in a systematic way to uncover new therapeutic ("positive") drug-disease associations



- Yet there is a large imbalance of outcomes between known drug-disease associations • there is *implicit* information to exploit
- **Collaborative filtering (CF)** filters for patterns in associations by implementing collaboration across entities (ex. drugs, diseases) Returns a matrix of drug-disease pairs



## I. Standardized, reproducible datasets and pipelines to evaluate drug repurposing models

Two new reproducible datasets from biological data

| Dataset    | Data type          | #drug | #drug<br>features | #disease | #disease<br>features | #positive<br>(negative) |     |
|------------|--------------------|-------|-------------------|----------|----------------------|-------------------------|-----|
| TRANSCRIPT | Gene<br>expression | 204   | 12,096            | 116      | 12,096               | 401<br>(11)             | [2] |

#### Two Python packages to enable benchmarking [4]

- stanscofi automates data processing, model training and evaluation
- benchscofi implements ~20 state-of-the-art CF algorithms

#### **Benchmark on 6 datasets and 11 algorithms**

0.87

0.86

0.83

0.78

0.70



- Datasets 1 synthetic (S), 2 text-mining (T), 4 biological data-based (B)
- Algorithms 5 matrix factorization (M), 3 neural networks (N), 3 graph-based (G) ITERATE N=100 times for <DATA>, <SPLIT>, <MODEL>, <METRIC>



## II. Guidelines: Q1. Which metric? Q2. Which dataset? Q3. How to measure the generalization error?

**Q1.** Choice of validation metric

# **Q2.** Choice of a dataset (with µ=NS-AUC)

• is it a challenging one?

Correlogram:  $R^2$  plot & Spearman's  $\rho$  (N=6900/metric) Accuracy 0 1 -0.51 0.11 0.60 0.09 3 × #it. Median on Top-3 algs, 100 iterations = 0.9this dataset is easy 1.00 Synthetic (S) 0.62 0.61 -0.43 0.87 Gottlieb (B)

Q3. Approximation of the generalization error a non-random "cheap" data splitting method for maximizing dissimilarity b/w training & validation [6]

| TRAINING SET | VALIDATION SET |  |  |  |  |
|--------------|----------------|--|--|--|--|





|   | LRSSL      | (B) |
|---|------------|-----|
|   | Cdataset   | (T) |
|   | Fdataset   | (T) |
|   | PREDICT    | (B) |
| 1 | TRANSCRIPT | (B) |
|   |            |     |

• are features useful for classification?

for each dataset, test  $H_0$ :  $\mu_{alg w/ feat.} = \mu_{alg w/ o feat}$ with a Kruskal-Wallis H-test,  $\alpha = 1\%$ , N<sub>feat</sub>=600, N<sub>w/o</sub>=500

Yes for all datasets but the synthetic one (which makes sense).



Fig. 5. Weakly correlated training / validation sets from the dendrogram computed on drugs

### III. Benchmark results: approximation and generalization errors

### **Top-3 average AUC in each dataset**

 $\propto \sum_{(m,d)>0} \sum_{(m',d)<0} \mathbb{1}(\hat{A}[m,d] \ge \hat{A}[m',d])$ 

NS AUC [5] / disease d



#### **Top-3 average NS-AUC in each dataset**



• is there a clear winner?

BNNR [7] is almost in all Top-3 future papers should try to beat it!

a type of method: (M), (G) o consistently better?

### Discussion

Three novel contributions: • richer, larger datasets, • standardized evaluation • medium-scale reproducible benchmark

ensure a fair assessment of the technological improvement by a method yield a healthier ecosystem and easier development of drug repurposing

[1] Philippidis. (2023). DOI: 10.1089/genedge.5.1.39 **[2]**TRANSCRIPT. DOI: 10.5281/zenodo.7982976 [3] PREDICT. DOI: 10.5281/zenodo.7983090 [4] C.R., J.-J. V., O.W. (2024). DOI: 10.21105/joss.05973 [5] Yu, Bilenko, Lin. DOI: 10.1137/1.9781611974973 [6] Chekroud et al. DOI: 10.1126/science.adg8538  $[\times]$ [7] Yang et al. DOI: 10.1093/bioinformatics/btz331



GitHub benchmark code repository

clemence.reda@uni-rostock.de https://recess-eu-project.github.io