
Near-Optimal Collaborative Learning in Bandits

Introduction of the Weighted Collaborative Model

Collaborative learning is a general machine learning paradigm in which a

group of M agents collectively train a learning algorithm. Making personalized

decisions for each agent [1] leads to the twist that each agent m should play

the optimal arm, among K ones, in a mixed model µ'm∈ℝK which is

obtained as a combination of her local model µm∈ℝK with the local

models of other agents (µn)n≠m

• The strategy to build a near-optimal algorithm for CBAI has the

potential to be extended to other identification problems.

• A possible subsequent work would add privacy-preserving features

to these algorithms [4].

Collaborative Best-Arm Identification (CBAI)

Near-Optimal Algorithm for CBAI

Figure 1. Collaborative setting, with M=3 agents/populations, K=2 arms/treatments. ✱ denotes optimal arms for each agent.
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In a collaborative setting in bandits, when the optimal arm for each agent maximizes some global reward computed across agents,

communication between agents often becomes necessary. How to guarantee sample-efficiency in that case while limiting

communication? What about regret guarantees?

Weighted collaborative model.

W=(wn,m)n,m∈[0,1]M×M: weight matrix quantifying similarities between agents.

Expected mixed reward for arm k in agent m is

µ′k,m := Σn≤M wn,m µk,n

Assuming that the bandits are Gaussian, that is, the observed reward of

selected arm πt at time t in m rπt,m is rπt,m = µπt,m + ε, and ε ∼𝒩 (0,1)

This setting encompasses several prior works [1-3], including best arm

identification (M=1). The goal is to exploit the information from W to decrease

sample complexity/regret, with little cross-agent communication about

observed rewards.
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For each agent m, identify with prob. 1−δ the arm ★m := arg maxk≤K µ'k,m

(with highest expected reward) by observing as few rewards as possible (low

sample complexity).

Lower bound on the sample complexity.

On instance µ∈ℝK×M and weight matrix W s.t. ∀m, wm,m ≠ 0, any algorithm 𝒜
which is correct with prob. 1-δ (δ ≤ 0.5), and communicates at each round, 

samples in expectation at least T★W(µ) log(1/(2.4δ)) times, where

T★W(µ) := mint∈(ℝ+)
K×M Σk,m tk,m

s.t. ∀m≤M, ∀k≠★m, Σn≤M w2
n,m(1/tk,n+1/t★m,n) ≤ (µ'★m,m-µ'k,m)2/2

In the instance in Figure 1, T★W(µ) ≈ 1,422 whereas T★Id(µ) ≈ 3,368.

Complexity of the Problem

We introduce a phased-elimination algorithm (Algorithm 1) to solve this

problem, based on a relaxation of the lower bound problem P̃★

We show that P̃★(Δ) ≤ T★W(µ) ≤ 2P̃★(Δ) for Δk,m := µ'★m,m-µ'k,m. Then:

Algorithm 1. Weighted Collaborative Phased Elimination for Best Arm Identification (W-CPE-BAI) algorithm for CBAI.

Collaborative Regret Minimization

For each agent m, the objective is to minimize the following regret at

horizon T Rµ(T) ∶= E[ ∑m,t µ′★m,m − µπt,m ]

This lower bound proves the conjecture in [1] with weaker assumptions.

Discussion

Relaxed lower bound problem.

For any Δ∈ℝK×M and weight matrix W

P̃★(Δ) := mint∈(ℝ+)
K×MΣk,m tk,m s.t. ∀m≤M, ∀k≤K, Σn≤M w2

n,m/tk,n ≤ (Δk,m)2/2

Sample Complexity Upper Bound for W-CPE-BAI.

With prob. 1−δ, W-CPE-BAI outputs the optimal arm for each agent by 

sampling at most 32T★W(µ)log2(8/(mink≤K Δk,m))log(1/δ) + oδ→0(log(1/δ)) times.

Lower bound on the regret.

On instance µ∈ℝK×M and weight matrix W, any uniformly efficient algorithm 

in which all agents communicate after each round satisfies 

lim infT→∞ Rµ(T)/log(T) ≥ C★W(µ),

where C★W(µ) := minc∈(ℝ
+
)
K×M Σm,k≠★m ck,m Δk,m

s.t. ∀m≤M, ∀k≤K, Σn s.t. k≠★n w2
n,m/ck,n ≤ (Δk,m)2/2


